Enhancing Modularity-Based Graph Clustering

نویسندگان

  • Azzam Sleit
  • Sawsan Abusharkh
  • Wesam AlMobaideen
چکیده

Graph clustering is defined as grouping the vertices of a given input graph into clusters. This article proposes a Two-Phase Modularity-Based Graph Clustering (2-PMGC) algorithm based on modularity optimization. The algorithm consists mainly of two steps; namely, coarsening and refinement. The coarsening phase takes the original graph as input and produces levels of coarsen graphs. The second phase starts with the coarsest graph resulting from the previous phase and enhances clustering by further moving the vertices of each coarsen level between clusters. Our algorithm is evaluated for 16 real-world networks, where an obvious increase in modularity is achieved by the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An axiomatic study of objective functions for graph clustering

We investigate axioms that intuitively ought to be satisfied by graph clustering objective functions. Two tailored for graph clustering objectives are introduced, and the four axioms introduced in previous work on distance based clustering are reformulated and generalized for the graph setting. We show that modularity, a standard objective for graph clustering, does not satisfy all these axioms...

متن کامل

A partitioning-based divisive clustering technique for maximizing the modularity

We present a new graph clustering algorithm aimed at obtaining clusterings of high modularity. The algorithm pursues a divisive clustering approach and uses established graph partitioning algorithms and techniques to compute recursive bipartitions of the input as well as to refine clusters. Experimental evaluation shows that the modularity scores obtained compare favorably to many previous appr...

متن کامل

Axioms for graph clustering quality functions Axioms for graph clustering quality functions

We investigate properties that intuitively ought to be satisfied by graph clustering quality functions, i.e. functions that assign a score to a clustering of a graph. Graph clustering, also known as network community detection, is often performed by optimizing such a function. Two axioms tailored for graph clustering quality functions are introduced, and the four axioms introduced in previous w...

متن کامل

Mining Overlapping Communities in Real-world Networks Based on Extended Modularity Gain

Detecting communities plays a vital role in studying group level patterns of a social network and it can be helpful in developing several recommendation systems such as movie recommendation, book recommendation, friend recommendation and so on. Most of the community detection algorithms can detect disjoint communities only, but in the real time scenario, a node can be a member of more than one ...

متن کامل

Axioms for graph clustering quality functions

We investigate properties that intuitively ought to be satisfied by graph clustering quality functions, that is, functions that assign a score to a clustering of a graph. Graph clustering, also known as network community detection, is often performed by optimizing such a function. Two axioms tailored for graph clustering quality functions are introduced, and the four axioms introduced in previo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013